Network Layer

Pavlos Grigoriadis - <u>pgrigor@csd.uoc.gr</u> Christina Papachristoudi - <u>chrisp@csd.uoc.gr</u>

Network Layer

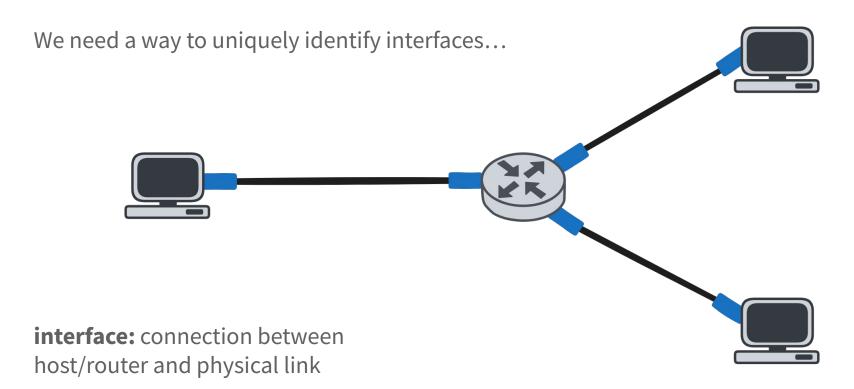
Data Plane

How a router forwards the packets that arrive in its incoming interfaces to outgoing interfaces

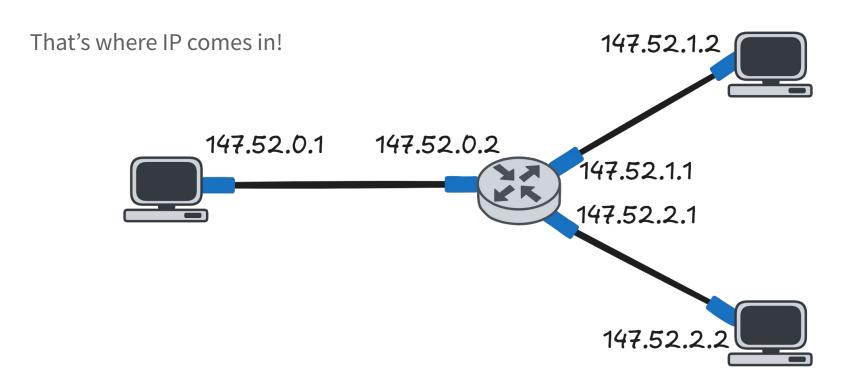
Consists of:

- Header inspection
- Implemented mainly in hardware
- Follows the instructions given by the Control Plane
- Forwarding Table

Control Plane

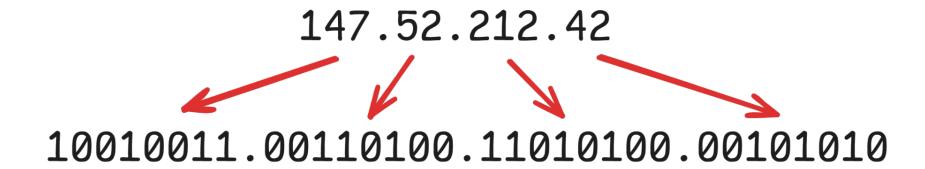

How a packet is routed among the routers (end-to-end routing).

Consists of:

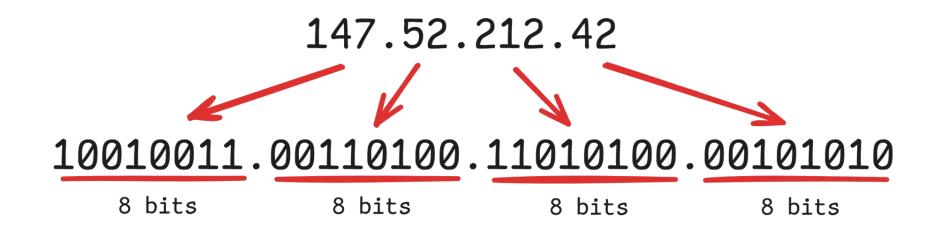

- Implemented mainly in software
- Routing Algorithms and Protocols
- Routing Table

Data Plane

Addressing



Addressing


IPv4

- a unique identifier for each interface
- 32-bits, decimal representation a.b.c.d
- 4 octets of 8 bits

IPv4

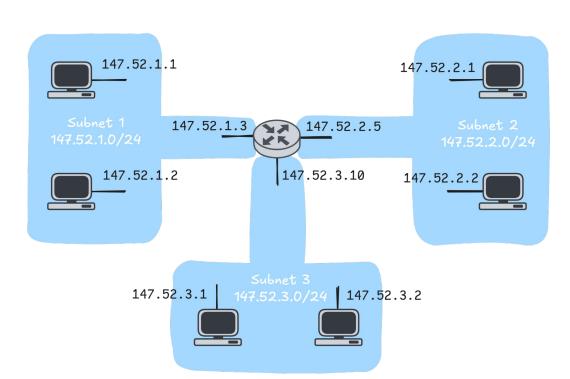
- each octet is **8 bits** \rightarrow can represent $2^8 = 256$ numbers
- so valid octets are values between 0 255

Prefixes

- Each network has its own prefix
 - o a range of IPs it can assign to its devices
- a.b.c.d/x
 - x is the subnet mask: defines how many bits the subnet part is
 - the first x bits are the subnet part: is the same for all IPs inside a subnet
 - the rest are the **host part**: is unique per host

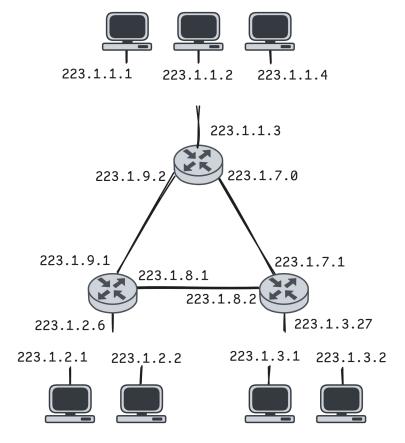
147.52.0.0/16

Prefixes


- Each network has its own prefix
 - a range of IPs it can assign to its devices
- a.b.c.d/x
 - x is the subnet **mask:** defines how many bits the subnet part is
 - the first **x** bits are the **subnet part**: is the same for all IPs inside a subnet
 - the rest are the **host part**: is unique per host

Subnet

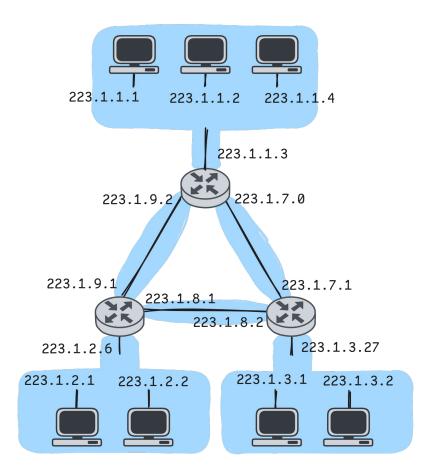
Interfaces with **same subnet part** of IP address


These interfaces can physically reach each other without passing through an intervening router

 inside the subnet communication happens via Link Layer

Subnets

How many subnets are here?



Subnets

How many subnets are here?

There are 6 subnets!

Besides the 3 subnets that contain hosts, there are the subnets that consist of the interfaces of the links between 2 routers

Prefixes (Continued)

There are some special IPs:

- Network address: 147.52.0.0
 - the first IP of the network
 - o all host part bits are **0**
 - identifies the network
- **Broadcast address:** 147.52.255.255
 - the last IP of the network
 - o all host part bits are 1
 - sends the message to every device in the network

These IPs cannot be assigned to hosts

• Available IPs: $2^{32-16} - 2 = 2^{16} - 2$

147.52.0.0/16

Subnet part

Host part

Subnet Mask

There is a different way to present a subnet mask besides /x.

- A continuous **sequence of 1s** followed by 0s.
- The number of 1s defines the subnet part.

1111111.11111111.1100000.00000000

We have 18 sequential 1s so a /18 mask.

In decimal format:

255.255.192.0

Other • /16 == 255.255.0.0 • /23 == 255.255.254.0 Examples: • /24 == 255.255.255.0 • /18 == 255.255.192.0

Subnet Mask

Given the IP **130.5.5.25** and the mask **/24** we can find the prefix:

IP: 130.5.5.25 10000010.00000101.00000101.00011001

Mask: 255.255.25.0 111111111.11111111.1111111.00000000

AND

Prefix: 130.5.5.0 10000010.00000101.00000101.00000000

IP/Mask: 130.5.5.25/24 10000010.00000101.00000101.00011001

Prefix: 130.5.5.0 10000010.00000101.00000101.00000000

So we can see that the 2 notations have exactly the same meaning.

Many organizations divide their networks to smaller networks to:

- Facilitate the management
- Enhance the security by reducing the broadcast domains

- Network with an IP prefix 223.1.17.0/24
- Separate the network into two subnets

Solution:

Decimal IP	223	1	17	0
Binary IP	11011111	00000001	0010001	00000000

- We borrow a bit from the host part and make it part of the subnet part
- With **n** borrowed bits we can create **2**ⁿ subnets

Original 223.1.17.0**/24**

Decimal IP	223	1	17	0
Binary IP	11011111	00000001	0010001	XXXXXXXX

- We **borrow a bit from the host part** and make it part of the subnet part
- With n borrowed bits we can create 2ⁿ subnets.

Original	
223.1.17.0 /24	

Decimal IP	223	1	17	0
Binary IP	11011111	00000001	0010001	XXXXXXXX

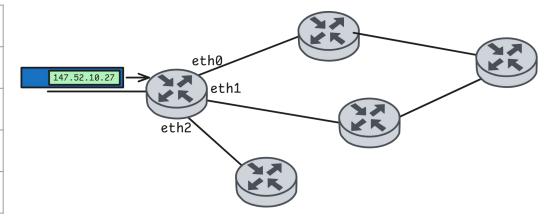
Subnet 1 223.1.17.0/25

Decimal IP	223	1	17	0
Binary IP	11011111	00000001	0010001	0xxxxxxx

Subnet 2 223.1.17.128**/25**

Decimal IP	223	1	17	128
Binary IP	11011111	00000001	0010001	1xxxxxxx

Subnet 1


Prefix	223.1.17.0/25	
Available IPs for hosts	$2^{32-25} - 2 = 126$	
Network Address	223.1.17.0	
Broadcast Address	223.1.17.127	

Subnet 2

Prefix	223.1.17.128/25	
Available IPs for hosts	$2^{32-25} - 2 = 126$	
Network Address	223.1.17.128	
Broadcast Address	223.1.17.255	

- Each router has a forwarding table
- The entries contain the **prefixes** with the corresponding **output interface**
- The table is filled by routing algorithms

Network Destination	Output Link
147.52.0.0/16	eth0
223.1.17.0/25	eth2
223.1.17.128/25	eth1
0.0.0.0/0	eth1

Assume this forwarding table of a router:

Network Destination	Output Link
200.23.16.0/21	eth0
200.23.24.0/24	eth1
200.23.24.0/21	eth2
0.0.0.0/0	eth2

Problem

From which interface will the router forward a packet with destination IP:

- A. 200.23.17.154
- B. 200.23.14.170

We convert the IP addresses in their binary form:

- 200.23.17.154 → 11001000 00010111 00010001 10011010
- 200.23.24.170 → 11001000 00010111 00011000 10101010

Network Destination			Output Link	
11001000	00010111	00010***	*****	eth0
11001000	00010111	00011000	*****	eth1
11001000	00010111	00011***	*****	eth2
*****	*****	*****	*****	eth2

• 200.23.17.154 → **11001000 00010111 00010001 10011010**

Network Destination	Output Link
11001000 00010111 00010*** ******	eth0
11001000 00010111 00011000 ******	eth1
11001000 00010111 00011*** ******	eth2
****** ****** ******	eth2

- $200.23.17.154 \rightarrow 11001000 00010111 00010001 10011010$
- So interface **eth0**

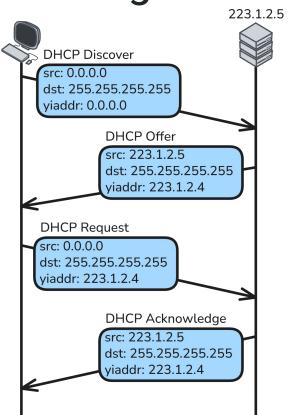
Network Destination	Output Link
11001000 00010111 00010*** *******	eth0
11001000 00010111 00011000 ******	eth1
11001000 00010111 00011*** ******	eth2
****** ****** ****** *****	eth2

● 200.23.24.170 → **11001000 00010111 00011000 10101010**

Network Destinati	Output Link	
11001000 000101	11 00010*** ******	eth0
11001000 000101	11 00011000 ******	eth1
11001000 000101	11 00011*** ******	eth2
******	** ******	eth2

- 200.23.24.170 → 11001000 00010111 00011000 10101010
- IP matches to more than one prefix. What happens now?

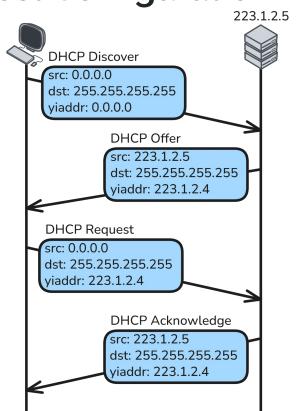
Network Destination			Output Link	
11001000	00010111	00010***	*****	eth0
11001000	00010111	00011000	*****	eth1
11001000	00010111	00011***	******	eth2
******	******	*****	*****	eth2


The forwarding table follows the rule of **Longest Prefix Match**

- When multiple prefixes match with the destination IP
- the one with the most matching bits will be chosen (the longest prefix)

- 200.23.24.170 → **11001000 00010111 00011000 10101010**
- IP matches to more than one prefix. What happens now? 🤔
- eth1 will be used because of Longest Prefix Match

Network Destination			Output Link	
11001000	00010111	00010***	*****	eth0
11001000	00010111	00011000	*****	eth1
11001000	00010111	00011***	*****	eth2
******	******	*****	*****	eth2


- Allows a host to dynamically obtain an IP address when it joins the network
- There is a **DHCP server** in each network
 - has an address pool
 - <IP, lease time> entries
 - o is the network router in many cases
- The client requests an IP from the DHCP server

DORA:

- Discover
- Offer
- Request
- Acknowledge

When the lease time expires the client:

- can renew the IP
- get a new IP

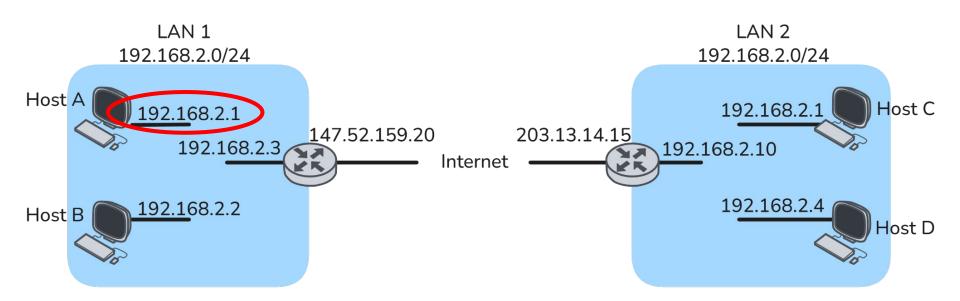
Besides the IP the DHCP provides info about:

- Lease Time
- Subnet Mask
- Default Gateway
 - The router's IP that the client should send traffic to outside its local network
- Local DNS Server

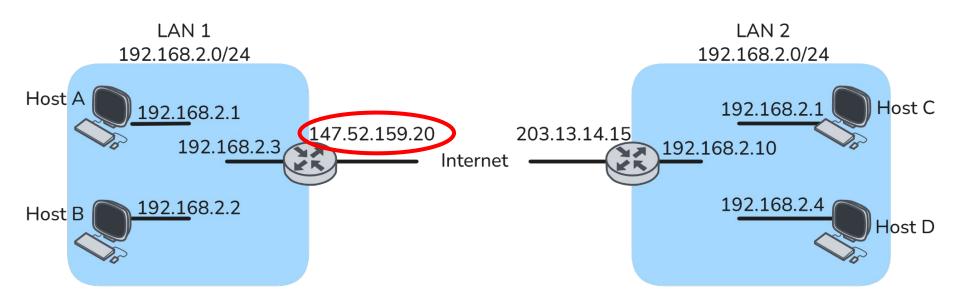
- As the Internet grew...
- ...so did the demand for IPs
- IPv4s \sim = 2^{32} = 4.3 billion addresses
- As you can imagine there are not enough

- Solution: NAT
 - o Long time solution: IPv6 ~= 340,282,366,920,938,463,463,374,607,431,768,211,456 IPs

Private IP ranges:


- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

These IPs are not routable:


- Only for communication inside a network (private network)
- Routers will **not forward** them **outside the network** (to the Internet)

When we want to send traffic outside the network:

NAT translates the private IP to a public IP

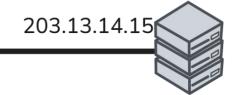
- **Host A and B** will communicate using **private** addresses
 - o Host B will see 192.168.2.1 as src IP for packet send from host A

- Host A and C will communicate using public addresses
 - Host C will see 147.52.159.20 as src IP for packet send from host A

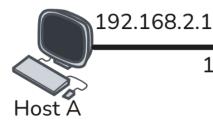
But how does this translation happen?

- NAT maps the source's (private IP, port) to (public IP, new port)
- Through the ports we can separate which host send which packet
- Translation Table:

Private IP, port	Public IP, port
192.168.2.1, 5800	147.52.159.20, 18000
192.168.2.2, 6000	147.52.159.20, 12036


src IP	192.168.2.1
src port	5800
dst IP	203.13.14.15
dst port	80

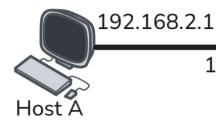
192.168.2.3


Internet

192.168.2.3

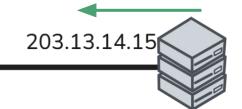
src IP	147.52.159.20
src port	18000
dst IP	203.13.14.15
dst port	80

147.52.159.20

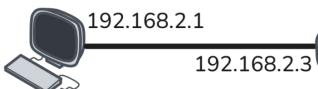

Internet

203.13.14.15

Store this translation to table:


 $(192.168.2.1, 5800) \rightarrow (147.52.159.20, 18000)$

src IP	203.13.14.15
src port	80
dst IP	147.52.159.20
dst port	18000



1 192.168.2.3

Internet



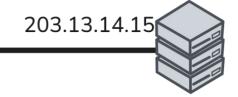
src IP	203.13.14.15
src port	80
dst IP	192.168.2.1
dst port	5800

147.52.159.20

Internet

Map back to original IP, port

 $(147.52.159.20, 18000) \rightarrow (192.168.2.1, 5800)$



192.168.2.1

192.168.2.3

Internet

What do we gain?

1. Conserves public IPv4 addresses

- a. Multiple devices share one public IP.
- b. Multiple networks can use the same private ranges (two separate organizations can both use 192.168.x.x internally without conflict)
- c. This greatly reduces the number of public IPs a network needs.

2. Increases network **security** (basic privacy)

- a. Internal devices are not directly exposed to the Internet.
- b. Outside hosts cannot directly initiate connections to private IPs.

Allow easy network renumbering

a. We can change internal private IP ranges without affecting the public-facing address.

What are the disadvantages?

- 1. **Breaks end-to-end** connectivity
 - a. changes the IP
 - b. another internet host will not be able to identify the specific host that sent the packet
- Adds processing overhead
- 3. Complicates protocols that **embed IP** addresses
- 4. Makes **inbound connections** harder
 - a. External clients cannot reach internal devices without extra configuration
- 5. Difficulties for **logging/filtering**
 - a. track individual hosts
 - b. apply IP-based access rules

Commands to show IP

- Windows: ipconfig
 - o ipconfig /all for more info

```
> ipconfig
Windows IP Configuration
Ethernet adapter Ethernet:
  Media State . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix .:
Ethernet adapter Ethernet 3:
  Connection-specific DNS Suffix .:
  Link-local IPv6 Address . . . . : fe80::b91f:c103:9f76:2ea0%21
   IPv4 Address. . . . . . . . . : 192.168.56.1
  Default Gateway . . . . . . . :
Wireless LAN adapter Local Area Connection* 3:
  Media State . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Local Area Connection* 12:
  Media State . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
Wireless LAN adapter Wi-Fi:
  Connection-specific DNS Suffix .:
  Link-local IPv6 Address . . . . : fe80::20cd:1da4:4ace:8e02%23
   IPv4 Address. . . . . . . . . . : 192.168.0.101
  Subnet Mask . . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . : 192.168.0.1
```

Commands to show IP

• Linux/Mac: **ifconfig**

```
nouli@DESKTOP-6186866:~$ ifconfig
eth0: flags=4163<UP.BROADCAST.RUNNING.MULTICAST> mtu 1500
       inet 172.19.232.83 netmask 255.255.240.0 broadcast 172.19.239.255
       inet6 fe80::215:5dff:fe34:84 prefixlen 64 scopeid 0x20<link>
       ether 00:15:5d:34:00:84 txqueuelen 1000 (Ethernet)
       RX packets 4633 bytes 5622090 (5.6 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 2797 bytes 260500 (260.5 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 62 bytes 6437 (6.4 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 62 bytes 6437 (6.4 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```